| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldom |  | 
						
							| 2 | 1 | brrelex2i |  | 
						
							| 3 |  | domeng |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 | 4 | ibi |  | 
						
							| 6 | 1 | brrelex1i |  | 
						
							| 7 |  | difss |  | 
						
							| 8 |  | ssdomg |  | 
						
							| 9 | 6 7 8 | mpisyl |  | 
						
							| 10 |  | domtr |  | 
						
							| 11 | 9 10 | mpancom |  | 
						
							| 12 | 1 | brrelex2i |  | 
						
							| 13 |  | domeng |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 14 | ibi |  | 
						
							| 16 | 11 15 | syl |  | 
						
							| 17 | 5 16 | anim12i |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 |  | exdistrv |  | 
						
							| 20 |  | simprll |  | 
						
							| 21 |  | simprrl |  | 
						
							| 22 |  | disjdif |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | ss2in |  | 
						
							| 25 | 24 | ad2ant2l |  | 
						
							| 26 | 25 | adantl |  | 
						
							| 27 |  | simplr |  | 
						
							| 28 |  | sseq0 |  | 
						
							| 29 | 26 27 28 | syl2anc |  | 
						
							| 30 |  | undif2 |  | 
						
							| 31 |  | unen |  | 
						
							| 32 | 30 31 | eqbrtrrid |  | 
						
							| 33 | 20 21 23 29 32 | syl22anc |  | 
						
							| 34 | 2 | ad3antrrr |  | 
						
							| 35 | 1 | brrelex2i |  | 
						
							| 36 | 35 | ad3antlr |  | 
						
							| 37 |  | unexg |  | 
						
							| 38 | 34 36 37 | syl2anc |  | 
						
							| 39 |  | unss12 |  | 
						
							| 40 | 39 | ad2ant2l |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 |  | ssdomg |  | 
						
							| 43 | 38 41 42 | sylc |  | 
						
							| 44 |  | endomtr |  | 
						
							| 45 | 33 43 44 | syl2anc |  | 
						
							| 46 | 45 | ex |  | 
						
							| 47 | 46 | exlimdvv |  | 
						
							| 48 | 19 47 | biimtrrid |  | 
						
							| 49 | 18 48 | mpd |  |