Metamath Proof Explorer


Theorem undomOLD

Description: Obsolete version of undom as of 4-Dec-2024. (Contributed by NM, 3-Sep-2004) (Revised by Mario Carneiro, 26-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion undomOLD ABCDBD=ACBD

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i ABBV
3 domeng BVABxAxxB
4 2 3 syl ABABxAxxB
5 4 ibi ABxAxxB
6 1 brrelex1i CDCV
7 difss CAC
8 ssdomg CVCACCAC
9 6 7 8 mpisyl CDCAC
10 domtr CACCDCAD
11 9 10 mpancom CDCAD
12 1 brrelex2i CADDV
13 domeng DVCADyCAyyD
14 12 13 syl CADCADyCAyyD
15 14 ibi CADyCAyyD
16 11 15 syl CDyCAyyD
17 5 16 anim12i ABCDxAxxByCAyyD
18 17 adantr ABCDBD=xAxxByCAyyD
19 exdistrv xyAxxBCAyyDxAxxByCAyyD
20 simprll ABCDBD=AxxBCAyyDAx
21 simprrl ABCDBD=AxxBCAyyDCAy
22 disjdif ACA=
23 22 a1i ABCDBD=AxxBCAyyDACA=
24 ss2in xByDxyBD
25 24 ad2ant2l AxxBCAyyDxyBD
26 25 adantl ABCDBD=AxxBCAyyDxyBD
27 simplr ABCDBD=AxxBCAyyDBD=
28 sseq0 xyBDBD=xy=
29 26 27 28 syl2anc ABCDBD=AxxBCAyyDxy=
30 undif2 ACA=AC
31 unen AxCAyACA=xy=ACAxy
32 30 31 eqbrtrrid AxCAyACA=xy=ACxy
33 20 21 23 29 32 syl22anc ABCDBD=AxxBCAyyDACxy
34 2 ad3antrrr ABCDBD=AxxBCAyyDBV
35 1 brrelex2i CDDV
36 35 ad3antlr ABCDBD=AxxBCAyyDDV
37 unexg BVDVBDV
38 34 36 37 syl2anc ABCDBD=AxxBCAyyDBDV
39 unss12 xByDxyBD
40 39 ad2ant2l AxxBCAyyDxyBD
41 40 adantl ABCDBD=AxxBCAyyDxyBD
42 ssdomg BDVxyBDxyBD
43 38 41 42 sylc ABCDBD=AxxBCAyyDxyBD
44 endomtr ACxyxyBDACBD
45 33 43 44 syl2anc ABCDBD=AxxBCAyyDACBD
46 45 ex ABCDBD=AxxBCAyyDACBD
47 46 exlimdvv ABCDBD=xyAxxBCAyyDACBD
48 19 47 biimtrrid ABCDBD=xAxxByCAyyDACBD
49 18 48 mpd ABCDBD=ACBD