Metamath Proof Explorer


Theorem unen

Description: Equinumerosity of union of disjoint sets. Theorem 4 of Suppes p. 92. (Contributed by NM, 11-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion unen A B C D A C = B D = A C B D

Proof

Step Hyp Ref Expression
1 bren A B x x : A 1-1 onto B
2 bren C D y y : C 1-1 onto D
3 exdistrv x y x : A 1-1 onto B y : C 1-1 onto D x x : A 1-1 onto B y y : C 1-1 onto D
4 vex x V
5 vex y V
6 4 5 unex x y V
7 f1oun x : A 1-1 onto B y : C 1-1 onto D A C = B D = x y : A C 1-1 onto B D
8 f1oen3g x y V x y : A C 1-1 onto B D A C B D
9 6 7 8 sylancr x : A 1-1 onto B y : C 1-1 onto D A C = B D = A C B D
10 9 ex x : A 1-1 onto B y : C 1-1 onto D A C = B D = A C B D
11 10 exlimivv x y x : A 1-1 onto B y : C 1-1 onto D A C = B D = A C B D
12 3 11 sylbir x x : A 1-1 onto B y y : C 1-1 onto D A C = B D = A C B D
13 1 2 12 syl2anb A B C D A C = B D = A C B D
14 13 imp A B C D A C = B D = A C B D