Metamath Proof Explorer


Theorem f1oun

Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998)

Ref Expression
Assertion f1oun F:A1-1 ontoBG:C1-1 ontoDAC=BD=FG:AC1-1 ontoBD

Proof

Step Hyp Ref Expression
1 dff1o4 F:A1-1 ontoBFFnAF-1FnB
2 dff1o4 G:C1-1 ontoDGFnCG-1FnD
3 fnun FFnAGFnCAC=FGFnAC
4 3 ex FFnAGFnCAC=FGFnAC
5 fnun F-1FnBG-1FnDBD=F-1G-1FnBD
6 cnvun FG-1=F-1G-1
7 6 fneq1i FG-1FnBDF-1G-1FnBD
8 5 7 sylibr F-1FnBG-1FnDBD=FG-1FnBD
9 8 ex F-1FnBG-1FnDBD=FG-1FnBD
10 4 9 im2anan9 FFnAGFnCF-1FnBG-1FnDAC=BD=FGFnACFG-1FnBD
11 10 an4s FFnAF-1FnBGFnCG-1FnDAC=BD=FGFnACFG-1FnBD
12 1 2 11 syl2anb F:A1-1 ontoBG:C1-1 ontoDAC=BD=FGFnACFG-1FnBD
13 dff1o4 FG:AC1-1 ontoBDFGFnACFG-1FnBD
14 12 13 imbitrrdi F:A1-1 ontoBG:C1-1 ontoDAC=BD=FG:AC1-1 ontoBD
15 14 imp F:A1-1 ontoBG:C1-1 ontoDAC=BD=FG:AC1-1 ontoBD