Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
bren |
⊢ ( 𝐶 ≈ 𝐷 ↔ ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) |
3 |
|
exdistrv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ↔ ( ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ) |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
4 5
|
unex |
⊢ ( 𝑥 ∪ 𝑦 ) ∈ V |
7 |
|
f1oun |
⊢ ( ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝑥 ∪ 𝑦 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ) |
8 |
|
f1oen3g |
⊢ ( ( ( 𝑥 ∪ 𝑦 ) ∈ V ∧ ( 𝑥 ∪ 𝑦 ) : ( 𝐴 ∪ 𝐶 ) –1-1-onto→ ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
9 |
6 7 8
|
sylancr |
⊢ ( ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |
10 |
9
|
ex |
⊢ ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
11 |
10
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
12 |
3 11
|
sylbir |
⊢ ( ( ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 ∧ ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
13 |
1 2 12
|
syl2anb |
⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) ) |
14 |
13
|
imp |
⊢ ( ( ( 𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ) ∧ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( 𝐵 ∩ 𝐷 ) = ∅ ) ) → ( 𝐴 ∪ 𝐶 ) ≈ ( 𝐵 ∪ 𝐷 ) ) |