| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bren | 
							⊢ ( 𝐴  ≈  𝐵  ↔  ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							bren | 
							⊢ ( 𝐶  ≈  𝐷  ↔  ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 )  | 
						
						
							| 3 | 
							
								
							 | 
							exdistrv | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑦 : 𝐶 –1-1-onto→ 𝐷 )  ↔  ( ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 6 | 
							
								4 5
							 | 
							unex | 
							⊢ ( 𝑥  ∪  𝑦 )  ∈  V  | 
						
						
							| 7 | 
							
								
							 | 
							f1oun | 
							⊢ ( ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑦 : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ ) )  →  ( 𝑥  ∪  𝑦 ) : ( 𝐴  ∪  𝐶 ) –1-1-onto→ ( 𝐵  ∪  𝐷 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							f1oen3g | 
							⊢ ( ( ( 𝑥  ∪  𝑦 )  ∈  V  ∧  ( 𝑥  ∪  𝑦 ) : ( 𝐴  ∪  𝐶 ) –1-1-onto→ ( 𝐵  ∪  𝐷 ) )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							sylancr | 
							⊢ ( ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑦 : 𝐶 –1-1-onto→ 𝐷 )  ∧  ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ ) )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ex | 
							⊢ ( ( 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑦 : 𝐶 –1-1-onto→ 𝐷 )  →  ( ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							exlimivv | 
							⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  𝑦 : 𝐶 –1-1-onto→ 𝐷 )  →  ( ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							sylbir | 
							⊢ ( ( ∃ 𝑥 𝑥 : 𝐴 –1-1-onto→ 𝐵  ∧  ∃ 𝑦 𝑦 : 𝐶 –1-1-onto→ 𝐷 )  →  ( ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) ) )  | 
						
						
							| 13 | 
							
								1 2 12
							 | 
							syl2anb | 
							⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷 )  →  ( ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imp | 
							⊢ ( ( ( 𝐴  ≈  𝐵  ∧  𝐶  ≈  𝐷 )  ∧  ( ( 𝐴  ∩  𝐶 )  =  ∅  ∧  ( 𝐵  ∩  𝐷 )  =  ∅ ) )  →  ( 𝐴  ∪  𝐶 )  ≈  ( 𝐵  ∪  𝐷 ) )  |