Metamath Proof Explorer


Theorem exlimivv

Description: Inference form of Theorem 19.23 of Margaris p. 90, see 19.23 . (Contributed by NM, 1-Aug-1995)

Ref Expression
Hypothesis exlimivv.1 ( 𝜑𝜓 )
Assertion exlimivv ( ∃ 𝑥𝑦 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 exlimivv.1 ( 𝜑𝜓 )
2 1 exlimiv ( ∃ 𝑦 𝜑𝜓 )
3 2 exlimiv ( ∃ 𝑥𝑦 𝜑𝜓 )