Metamath Proof Explorer
Description: Inference form of Theorem 19.23 of Margaris p. 90, see 19.23 .
(Contributed by NM, 1-Aug-1995)
|
|
Ref |
Expression |
|
Hypothesis |
exlimivv.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
exlimivv.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
1
|
exlimiv |
⊢ ( ∃ 𝑦 𝜑 → 𝜓 ) |
3 |
2
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → 𝜓 ) |