Metamath Proof Explorer


Theorem exlimdv

Description: Deduction form of Theorem 19.23 of Margaris p. 90, see 19.23 . (Contributed by NM, 27-Apr-1994) Remove dependencies on ax-6 , ax-7 . (Revised by Wolf Lammen, 4-Dec-2017)

Ref Expression
Hypothesis exlimdv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion exlimdv ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 exlimdv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 eximdv ( 𝜑 → ( ∃ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )
3 ax5e ( ∃ 𝑥 𝜒𝜒 )
4 2 3 syl6 ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )