Metamath Proof Explorer
Description: The union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16.
(Contributed by NM, 1-Jul-1994)
|
|
Ref |
Expression |
|
Hypotheses |
unex.1 |
⊢ 𝐴 ∈ V |
|
|
unex.2 |
⊢ 𝐵 ∈ V |
|
Assertion |
unex |
⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
unex.1 |
⊢ 𝐴 ∈ V |
2 |
|
unex.2 |
⊢ 𝐵 ∈ V |
3 |
1 2
|
unipr |
⊢ ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) |
4 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
5 |
4
|
uniex |
⊢ ∪ { 𝐴 , 𝐵 } ∈ V |
6 |
3 5
|
eqeltrri |
⊢ ( 𝐴 ∪ 𝐵 ) ∈ V |