| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ∅  →  𝑥  =  ∅ )  | 
						
						
							| 2 | 
							
								1 1
							 | 
							breq12d | 
							⊢ ( 𝑥  =  ∅  →  ( 𝑥  ≈  𝑥  ↔  ∅  ≈  ∅ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 )  | 
						
						
							| 4 | 
							
								3 3
							 | 
							breq12d | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≈  𝑥  ↔  𝑦  ≈  𝑦 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  suc  𝑦  →  𝑥  =  suc  𝑦 )  | 
						
						
							| 6 | 
							
								5 5
							 | 
							breq12d | 
							⊢ ( 𝑥  =  suc  𝑦  →  ( 𝑥  ≈  𝑥  ↔  suc  𝑦  ≈  suc  𝑦 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 )  | 
						
						
							| 8 | 
							
								7 7
							 | 
							breq12d | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ≈  𝑥  ↔  𝐴  ≈  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ∅  =  ∅  | 
						
						
							| 10 | 
							
								
							 | 
							en0 | 
							⊢ ( ∅  ≈  ∅  ↔  ∅  =  ∅ )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpbir | 
							⊢ ∅  ≈  ∅  | 
						
						
							| 12 | 
							
								
							 | 
							en2sn | 
							⊢ ( ( 𝑦  ∈  V  ∧  𝑦  ∈  V )  →  { 𝑦 }  ≈  { 𝑦 } )  | 
						
						
							| 13 | 
							
								12
							 | 
							el2v | 
							⊢ { 𝑦 }  ≈  { 𝑦 }  | 
						
						
							| 14 | 
							
								13
							 | 
							jctr | 
							⊢ ( 𝑦  ≈  𝑦  →  ( 𝑦  ≈  𝑦  ∧  { 𝑦 }  ≈  { 𝑦 } ) )  | 
						
						
							| 15 | 
							
								
							 | 
							nnord | 
							⊢ ( 𝑦  ∈  ω  →  Ord  𝑦 )  | 
						
						
							| 16 | 
							
								
							 | 
							orddisj | 
							⊢ ( Ord  𝑦  →  ( 𝑦  ∩  { 𝑦 } )  =  ∅ )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( 𝑦  ∈  ω  →  ( 𝑦  ∩  { 𝑦 } )  =  ∅ )  | 
						
						
							| 18 | 
							
								17 17
							 | 
							jca | 
							⊢ ( 𝑦  ∈  ω  →  ( ( 𝑦  ∩  { 𝑦 } )  =  ∅  ∧  ( 𝑦  ∩  { 𝑦 } )  =  ∅ ) )  | 
						
						
							| 19 | 
							
								
							 | 
							unen | 
							⊢ ( ( ( 𝑦  ≈  𝑦  ∧  { 𝑦 }  ≈  { 𝑦 } )  ∧  ( ( 𝑦  ∩  { 𝑦 } )  =  ∅  ∧  ( 𝑦  ∩  { 𝑦 } )  =  ∅ ) )  →  ( 𝑦  ∪  { 𝑦 } )  ≈  ( 𝑦  ∪  { 𝑦 } ) )  | 
						
						
							| 20 | 
							
								14 18 19
							 | 
							syl2anr | 
							⊢ ( ( 𝑦  ∈  ω  ∧  𝑦  ≈  𝑦 )  →  ( 𝑦  ∪  { 𝑦 } )  ≈  ( 𝑦  ∪  { 𝑦 } ) )  | 
						
						
							| 21 | 
							
								
							 | 
							df-suc | 
							⊢ suc  𝑦  =  ( 𝑦  ∪  { 𝑦 } )  | 
						
						
							| 22 | 
							
								20 21 21
							 | 
							3brtr4g | 
							⊢ ( ( 𝑦  ∈  ω  ∧  𝑦  ≈  𝑦 )  →  suc  𝑦  ≈  suc  𝑦 )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							⊢ ( 𝑦  ∈  ω  →  ( 𝑦  ≈  𝑦  →  suc  𝑦  ≈  suc  𝑦 ) )  | 
						
						
							| 24 | 
							
								2 4 6 8 11 23
							 | 
							finds | 
							⊢ ( 𝐴  ∈  ω  →  𝐴  ≈  𝐴 )  |