Metamath Proof Explorer


Theorem enrefg

Description: Equinumerosity is reflexive. Theorem 1 of Suppes p. 92. (Contributed by NM, 18-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion enrefg ( 𝐴𝑉𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴
2 f1oen2g ( ( 𝐴𝑉𝐴𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 ) → 𝐴𝐴 )
3 1 2 mp3an3 ( ( 𝐴𝑉𝐴𝑉 ) → 𝐴𝐴 )
4 3 anidms ( 𝐴𝑉𝐴𝐴 )