| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							id | 
							 |-  ( x = (/) -> x = (/) )  | 
						
						
							| 2 | 
							
								1 1
							 | 
							breq12d | 
							 |-  ( x = (/) -> ( x ~~ x <-> (/) ~~ (/) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							 |-  ( x = y -> x = y )  | 
						
						
							| 4 | 
							
								3 3
							 | 
							breq12d | 
							 |-  ( x = y -> ( x ~~ x <-> y ~~ y ) )  | 
						
						
							| 5 | 
							
								
							 | 
							id | 
							 |-  ( x = suc y -> x = suc y )  | 
						
						
							| 6 | 
							
								5 5
							 | 
							breq12d | 
							 |-  ( x = suc y -> ( x ~~ x <-> suc y ~~ suc y ) )  | 
						
						
							| 7 | 
							
								
							 | 
							id | 
							 |-  ( x = A -> x = A )  | 
						
						
							| 8 | 
							
								7 7
							 | 
							breq12d | 
							 |-  ( x = A -> ( x ~~ x <-> A ~~ A ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  (/) = (/)  | 
						
						
							| 10 | 
							
								
							 | 
							en0 | 
							 |-  ( (/) ~~ (/) <-> (/) = (/) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mpbir | 
							 |-  (/) ~~ (/)  | 
						
						
							| 12 | 
							
								
							 | 
							en2sn | 
							 |-  ( ( y e. _V /\ y e. _V ) -> { y } ~~ { y } ) | 
						
						
							| 13 | 
							
								12
							 | 
							el2v | 
							 |-  { y } ~~ { y } | 
						
						
							| 14 | 
							
								13
							 | 
							jctr | 
							 |-  ( y ~~ y -> ( y ~~ y /\ { y } ~~ { y } ) ) | 
						
						
							| 15 | 
							
								
							 | 
							nnord | 
							 |-  ( y e. _om -> Ord y )  | 
						
						
							| 16 | 
							
								
							 | 
							orddisj | 
							 |-  ( Ord y -> ( y i^i { y } ) = (/) ) | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( y e. _om -> ( y i^i { y } ) = (/) ) | 
						
						
							| 18 | 
							
								17 17
							 | 
							jca | 
							 |-  ( y e. _om -> ( ( y i^i { y } ) = (/) /\ ( y i^i { y } ) = (/) ) ) | 
						
						
							| 19 | 
							
								
							 | 
							unen | 
							 |-  ( ( ( y ~~ y /\ { y } ~~ { y } ) /\ ( ( y i^i { y } ) = (/) /\ ( y i^i { y } ) = (/) ) ) -> ( y u. { y } ) ~~ ( y u. { y } ) ) | 
						
						
							| 20 | 
							
								14 18 19
							 | 
							syl2anr | 
							 |-  ( ( y e. _om /\ y ~~ y ) -> ( y u. { y } ) ~~ ( y u. { y } ) ) | 
						
						
							| 21 | 
							
								
							 | 
							df-suc | 
							 |-  suc y = ( y u. { y } ) | 
						
						
							| 22 | 
							
								20 21 21
							 | 
							3brtr4g | 
							 |-  ( ( y e. _om /\ y ~~ y ) -> suc y ~~ suc y )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							 |-  ( y e. _om -> ( y ~~ y -> suc y ~~ suc y ) )  | 
						
						
							| 24 | 
							
								2 4 6 8 11 23
							 | 
							finds | 
							 |-  ( A e. _om -> A ~~ A )  |