Metamath Proof Explorer


Theorem nnord

Description: A natural number is ordinal. (Contributed by NM, 17-Oct-1995)

Ref Expression
Assertion nnord ( 𝐴 ∈ ω → Ord 𝐴 )

Proof

Step Hyp Ref Expression
1 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
2 eloni ( 𝐴 ∈ On → Ord 𝐴 )
3 1 2 syl ( 𝐴 ∈ ω → Ord 𝐴 )