Description: Transitivity of dominance relation. Theorem 17 of Suppes p. 94. (Contributed by NM, 4-Jun-1998) (Revised by Mario Carneiro, 15-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | domtr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom | |
|
2 | vex | |
|
3 | 2 | brdom | |
4 | vex | |
|
5 | 4 | brdom | |
6 | exdistrv | |
|
7 | f1co | |
|
8 | 7 | ancoms | |
9 | vex | |
|
10 | vex | |
|
11 | 9 10 | coex | |
12 | f1eq1 | |
|
13 | 11 12 | spcev | |
14 | 8 13 | syl | |
15 | 4 | brdom | |
16 | 14 15 | sylibr | |
17 | 16 | exlimivv | |
18 | 6 17 | sylbir | |
19 | 3 5 18 | syl2anb | |
20 | 1 19 | vtoclr | |