Metamath Proof Explorer


Theorem domeng

Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of Enderton p. 146. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion domeng BCABxAxxB

Proof

Step Hyp Ref Expression
1 breq2 y=BAyAB
2 sseq2 y=BxyxB
3 2 anbi2d y=BAxxyAxxB
4 3 exbidv y=BxAxxyxAxxB
5 vex yV
6 5 domen AyxAxxy
7 1 4 6 vtoclbg BCABxAxxB