Metamath Proof Explorer


Theorem vtoclbg

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994)

Ref Expression
Hypotheses vtoclbg.1 x=Aφχ
vtoclbg.2 x=Aψθ
vtoclbg.3 φψ
Assertion vtoclbg AVχθ

Proof

Step Hyp Ref Expression
1 vtoclbg.1 x=Aφχ
2 vtoclbg.2 x=Aψθ
3 vtoclbg.3 φψ
4 1 2 bibi12d x=Aφψχθ
5 4 3 vtoclg AVχθ