Metamath Proof Explorer


Theorem domen

Description: Dominance in terms of equinumerosity. Example 1 of Enderton p. 146. (Contributed by NM, 15-Jun-1998)

Ref Expression
Hypothesis bren.1 BV
Assertion domen ABxAxxB

Proof

Step Hyp Ref Expression
1 bren.1 BV
2 1 brdom ABff:A1-1B
3 vex fV
4 3 f11o f:A1-1Bxf:A1-1 ontoxxB
5 4 exbii ff:A1-1Bfxf:A1-1 ontoxxB
6 excom fxf:A1-1 ontoxxBxff:A1-1 ontoxxB
7 5 6 bitri ff:A1-1Bxff:A1-1 ontoxxB
8 bren Axff:A1-1 ontox
9 8 anbi1i AxxBff:A1-1 ontoxxB
10 19.41v ff:A1-1 ontoxxBff:A1-1 ontoxxB
11 9 10 bitr4i AxxBff:A1-1 ontoxxB
12 11 exbii xAxxBxff:A1-1 ontoxxB
13 7 12 bitr4i ff:A1-1BxAxxB
14 2 13 bitri ABxAxxB