Metamath Proof Explorer


Theorem f11o

Description: Relationship between one-to-one and one-to-one onto function. (Contributed by NM, 4-Apr-1998)

Ref Expression
Hypothesis f11o.1 FV
Assertion f11o F:A1-1BxF:A1-1 ontoxxB

Proof

Step Hyp Ref Expression
1 f11o.1 FV
2 1 ffoss F:ABxF:AontoxxB
3 2 anbi1i F:ABFunF-1xF:AontoxxBFunF-1
4 df-f1 F:A1-1BF:ABFunF-1
5 dff1o3 F:A1-1 ontoxF:AontoxFunF-1
6 5 anbi1i F:A1-1 ontoxxBF:AontoxFunF-1xB
7 an32 F:AontoxFunF-1xBF:AontoxxBFunF-1
8 6 7 bitri F:A1-1 ontoxxBF:AontoxxBFunF-1
9 8 exbii xF:A1-1 ontoxxBxF:AontoxxBFunF-1
10 19.41v xF:AontoxxBFunF-1xF:AontoxxBFunF-1
11 9 10 bitri xF:A1-1 ontoxxBxF:AontoxxBFunF-1
12 3 4 11 3bitr4i F:A1-1BxF:A1-1 ontoxxB