Metamath Proof Explorer


Theorem fodomfib

Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006)

Ref Expression
Assertion fodomfib AFinAff:AontoBBBA

Proof

Step Hyp Ref Expression
1 fof f:AontoBf:AB
2 1 fdmd f:AontoBdomf=A
3 2 eqeq1d f:AontoBdomf=A=
4 dm0rn0 domf=ranf=
5 forn f:AontoBranf=B
6 5 eqeq1d f:AontoBranf=B=
7 4 6 bitrid f:AontoBdomf=B=
8 3 7 bitr3d f:AontoBA=B=
9 8 necon3bid f:AontoBAB
10 9 biimpac Af:AontoBB
11 10 adantll AFinAf:AontoBB
12 vex fV
13 12 rnex ranfV
14 5 13 eqeltrrdi f:AontoBBV
15 14 adantl AFinf:AontoBBV
16 0sdomg BVBB
17 15 16 syl AFinf:AontoBBB
18 17 adantlr AFinAf:AontoBBB
19 11 18 mpbird AFinAf:AontoBB
20 19 ex AFinAf:AontoBB
21 fodomfi AFinf:AontoBBA
22 21 ex AFinf:AontoBBA
23 22 adantr AFinAf:AontoBBA
24 20 23 jcad AFinAf:AontoBBBA
25 24 exlimdv AFinAff:AontoBBBA
26 25 expimpd AFinAff:AontoBBBA
27 sdomdomtr BBAA
28 0sdomg AFinAA
29 27 28 imbitrid AFinBBAA
30 fodomr BBAff:AontoB
31 29 30 jca2 AFinBBAAff:AontoB
32 26 31 impbid AFinAff:AontoBBBA