Description: Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb for arbitrary sets, this theorem does not require the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | fodomfib | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof | |
|
2 | 1 | fdmd | |
3 | 2 | eqeq1d | |
4 | dm0rn0 | |
|
5 | forn | |
|
6 | 5 | eqeq1d | |
7 | 4 6 | bitrid | |
8 | 3 7 | bitr3d | |
9 | 8 | necon3bid | |
10 | 9 | biimpac | |
11 | 10 | adantll | |
12 | vex | |
|
13 | 12 | rnex | |
14 | 5 13 | eqeltrrdi | |
15 | 14 | adantl | |
16 | 0sdomg | |
|
17 | 15 16 | syl | |
18 | 17 | adantlr | |
19 | 11 18 | mpbird | |
20 | 19 | ex | |
21 | fodomfi | |
|
22 | 21 | ex | |
23 | 22 | adantr | |
24 | 20 23 | jcad | |
25 | 24 | exlimdv | |
26 | 25 | expimpd | |
27 | sdomdomtr | |
|
28 | 0sdomg | |
|
29 | 27 28 | imbitrid | |
30 | fodomr | |
|
31 | 29 30 | jca2 | |
32 | 26 31 | impbid | |