| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|
| 2 |
|
fof |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
domnsym |
|
| 5 |
|
simp3 |
|
| 6 |
|
simp2 |
|
| 7 |
|
enfii |
|
| 8 |
5 6 7
|
syl2anc |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
difssd |
|
| 11 |
|
simplrr |
|
| 12 |
|
neldifsn |
|
| 13 |
|
nelne1 |
|
| 14 |
11 12 13
|
sylancl |
|
| 15 |
14
|
necomd |
|
| 16 |
|
df-pss |
|
| 17 |
10 15 16
|
sylanbrc |
|
| 18 |
|
php3 |
|
| 19 |
9 17 18
|
syl2anc |
|
| 20 |
6
|
ad2antrr |
|
| 21 |
|
sdomentr |
|
| 22 |
19 20 21
|
syl2anc |
|
| 23 |
4 22
|
nsyl3 |
|
| 24 |
8
|
adantr |
|
| 25 |
|
difss |
|
| 26 |
|
ssfi |
|
| 27 |
24 25 26
|
sylancl |
|
| 28 |
3
|
adantr |
|
| 29 |
|
fssres |
|
| 30 |
28 25 29
|
sylancl |
|
| 31 |
1
|
adantr |
|
| 32 |
|
foelrn |
|
| 33 |
31 32
|
sylan |
|
| 34 |
|
simprll |
|
| 35 |
|
simprrr |
|
| 36 |
|
eldifsn |
|
| 37 |
34 35 36
|
sylanbrc |
|
| 38 |
|
simprrl |
|
| 39 |
38
|
eqcomd |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
rspceeqv |
|
| 42 |
37 39 41
|
syl2anc |
|
| 43 |
|
fveqeq2 |
|
| 44 |
43
|
rexbidv |
|
| 45 |
42 44
|
syl5ibrcom |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
imp |
|
| 48 |
|
eldifsn |
|
| 49 |
|
eqid |
|
| 50 |
|
fveq2 |
|
| 51 |
50
|
rspceeqv |
|
| 52 |
49 51
|
mpan2 |
|
| 53 |
48 52
|
sylbir |
|
| 54 |
53
|
adantll |
|
| 55 |
47 54
|
pm2.61dane |
|
| 56 |
|
fvres |
|
| 57 |
56
|
eqeq2d |
|
| 58 |
57
|
rexbiia |
|
| 59 |
|
eqeq1 |
|
| 60 |
59
|
rexbidv |
|
| 61 |
58 60
|
bitrid |
|
| 62 |
55 61
|
syl5ibrcom |
|
| 63 |
62
|
rexlimdva |
|
| 64 |
63
|
imp |
|
| 65 |
33 64
|
syldan |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
|
dffo3 |
|
| 68 |
30 66 67
|
sylanbrc |
|
| 69 |
|
fodomfi |
|
| 70 |
27 68 69
|
syl2anc |
|
| 71 |
70
|
anassrs |
|
| 72 |
71
|
expr |
|
| 73 |
72
|
necon1bd |
|
| 74 |
23 73
|
mpd |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
ralrimivva |
|
| 77 |
|
dff13 |
|
| 78 |
3 76 77
|
sylanbrc |
|
| 79 |
|
df-f1o |
|
| 80 |
78 1 79
|
sylanbrc |
|