Metamath Proof Explorer


Theorem php3

Description: Corollary of Pigeonhole Principle. If A is finite and B is a proper subset of A , the B is strictly less numerous than A . Stronger version of Corollary 6C of Enderton p. 135. (Contributed by NM, 22-Aug-2008)

Ref Expression
Assertion php3 A Fin B A B A

Proof

Step Hyp Ref Expression
1 isfi A Fin x ω A x
2 relen Rel
3 2 brrelex1i A x A V
4 pssss B A B A
5 ssdomg A V B A B A
6 5 imp A V B A B A
7 3 4 6 syl2an A x B A B A
8 7 adantll x ω A x B A B A
9 bren A x f f : A 1-1 onto x
10 imass2 B A f B f A
11 4 10 syl B A f B f A
12 11 adantl f : A 1-1 onto x B A f B f A
13 pssnel B A y y A ¬ y B
14 eldif y A B y A ¬ y B
15 f1ofn f : A 1-1 onto x f Fn A
16 difss A B A
17 fnfvima f Fn A A B A y A B f y f A B
18 17 3expia f Fn A A B A y A B f y f A B
19 15 16 18 sylancl f : A 1-1 onto x y A B f y f A B
20 dff1o3 f : A 1-1 onto x f : A onto x Fun f -1
21 imadif Fun f -1 f A B = f A f B
22 20 21 simplbiim f : A 1-1 onto x f A B = f A f B
23 22 eleq2d f : A 1-1 onto x f y f A B f y f A f B
24 19 23 sylibd f : A 1-1 onto x y A B f y f A f B
25 n0i f y f A f B ¬ f A f B =
26 24 25 syl6 f : A 1-1 onto x y A B ¬ f A f B =
27 14 26 syl5bir f : A 1-1 onto x y A ¬ y B ¬ f A f B =
28 27 exlimdv f : A 1-1 onto x y y A ¬ y B ¬ f A f B =
29 28 imp f : A 1-1 onto x y y A ¬ y B ¬ f A f B =
30 13 29 sylan2 f : A 1-1 onto x B A ¬ f A f B =
31 ssdif0 f A f B f A f B =
32 30 31 sylnibr f : A 1-1 onto x B A ¬ f A f B
33 dfpss3 f B f A f B f A ¬ f A f B
34 12 32 33 sylanbrc f : A 1-1 onto x B A f B f A
35 imadmrn f dom f = ran f
36 f1odm f : A 1-1 onto x dom f = A
37 36 imaeq2d f : A 1-1 onto x f dom f = f A
38 f1ofo f : A 1-1 onto x f : A onto x
39 forn f : A onto x ran f = x
40 38 39 syl f : A 1-1 onto x ran f = x
41 35 37 40 3eqtr3a f : A 1-1 onto x f A = x
42 41 psseq2d f : A 1-1 onto x f B f A f B x
43 42 adantr f : A 1-1 onto x B A f B f A f B x
44 34 43 mpbid f : A 1-1 onto x B A f B x
45 php x ω f B x ¬ x f B
46 44 45 sylan2 x ω f : A 1-1 onto x B A ¬ x f B
47 f1of1 f : A 1-1 onto x f : A 1-1 x
48 f1ores f : A 1-1 x B A f B : B 1-1 onto f B
49 47 4 48 syl2an f : A 1-1 onto x B A f B : B 1-1 onto f B
50 vex f V
51 50 resex f B V
52 f1oeq1 y = f B y : B 1-1 onto f B f B : B 1-1 onto f B
53 51 52 spcev f B : B 1-1 onto f B y y : B 1-1 onto f B
54 bren B f B y y : B 1-1 onto f B
55 53 54 sylibr f B : B 1-1 onto f B B f B
56 49 55 syl f : A 1-1 onto x B A B f B
57 entr x B B f B x f B
58 57 expcom B f B x B x f B
59 56 58 syl f : A 1-1 onto x B A x B x f B
60 59 adantl x ω f : A 1-1 onto x B A x B x f B
61 46 60 mtod x ω f : A 1-1 onto x B A ¬ x B
62 61 exp32 x ω f : A 1-1 onto x B A ¬ x B
63 62 exlimdv x ω f f : A 1-1 onto x B A ¬ x B
64 9 63 syl5bi x ω A x B A ¬ x B
65 64 imp31 x ω A x B A ¬ x B
66 entr B A A x B x
67 66 ex B A A x B x
68 ensym B x x B
69 67 68 syl6com A x B A x B
70 69 ad2antlr x ω A x B A B A x B
71 65 70 mtod x ω A x B A ¬ B A
72 brsdom B A B A ¬ B A
73 8 71 72 sylanbrc x ω A x B A B A
74 73 exp31 x ω A x B A B A
75 74 rexlimiv x ω A x B A B A
76 1 75 sylbi A Fin B A B A
77 76 imp A Fin B A B A