Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) |
2 |
|
bren |
⊢ ( 𝐴 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 ) |
3 |
|
pssss |
⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) |
4 |
|
imass2 |
⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
5 |
3 4
|
syl |
⊢ ( 𝐵 ⊊ 𝐴 → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
7 |
|
pssnel |
⊢ ( 𝐵 ⊊ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
8 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) |
9 |
|
f1ofn |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 Fn 𝐴 ) |
10 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
11 |
|
fnfvima |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) |
12 |
11
|
3expia |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
13 |
9 10 12
|
sylancl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
14 |
|
dff1o3 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ↔ ( 𝑓 : 𝐴 –onto→ 𝑥 ∧ Fun ◡ 𝑓 ) ) |
15 |
|
imadif |
⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) |
16 |
14 15
|
simplbiim |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) |
17 |
16
|
eleq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) ) |
18 |
13 17
|
sylibd |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) ) |
19 |
|
n0i |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
20 |
18 19
|
syl6 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
21 |
8 20
|
syl5bir |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
22 |
21
|
exlimdv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
23 |
22
|
imp |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
24 |
7 23
|
sylan2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
25 |
|
ssdif0 |
⊢ ( ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ↔ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
26 |
24 25
|
sylnibr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ) |
27 |
|
dfpss3 |
⊢ ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ∧ ¬ ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ) ) |
28 |
6 26 27
|
sylanbrc |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ) |
29 |
|
imadmrn |
⊢ ( 𝑓 “ dom 𝑓 ) = ran 𝑓 |
30 |
|
f1odm |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → dom 𝑓 = 𝐴 ) |
31 |
30
|
imaeq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ dom 𝑓 ) = ( 𝑓 “ 𝐴 ) ) |
32 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 : 𝐴 –onto→ 𝑥 ) |
33 |
|
forn |
⊢ ( 𝑓 : 𝐴 –onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
34 |
32 33
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
35 |
29 31 34
|
3eqtr3a |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝐴 ) = 𝑥 ) |
36 |
35
|
psseq2d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) ) |
38 |
28 37
|
mpbid |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) |
39 |
|
php2 |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) → ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) |
40 |
38 39
|
sylan2 |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) |
41 |
|
nnfi |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) |
42 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 : 𝐴 –1-1→ 𝑥 ) |
43 |
|
f1ores |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
44 |
42 3 43
|
syl2an |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
45 |
|
vex |
⊢ 𝑓 ∈ V |
46 |
45
|
resex |
⊢ ( 𝑓 ↾ 𝐵 ) ∈ V |
47 |
|
f1oeq1 |
⊢ ( 𝑦 = ( 𝑓 ↾ 𝐵 ) → ( 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ↔ ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) ) |
48 |
46 47
|
spcev |
⊢ ( ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) → ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
49 |
|
bren |
⊢ ( 𝐵 ≈ ( 𝑓 “ 𝐵 ) ↔ ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
50 |
48 49
|
sylibr |
⊢ ( ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) → 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) |
51 |
44 50
|
syl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) |
52 |
|
endom |
⊢ ( 𝐵 ≈ ( 𝑓 “ 𝐵 ) → 𝐵 ≼ ( 𝑓 “ 𝐵 ) ) |
53 |
|
sdomdom |
⊢ ( ( 𝑓 “ 𝐵 ) ≺ 𝑥 → ( 𝑓 “ 𝐵 ) ≼ 𝑥 ) |
54 |
|
domfi |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑓 “ 𝐵 ) ≼ 𝑥 ) → ( 𝑓 “ 𝐵 ) ∈ Fin ) |
55 |
53 54
|
sylan2 |
⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → ( 𝑓 “ 𝐵 ) ∈ Fin ) |
56 |
55
|
3adant2 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → ( 𝑓 “ 𝐵 ) ∈ Fin ) |
57 |
|
domfi |
⊢ ( ( ( 𝑓 “ 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ) → 𝐵 ∈ Fin ) |
58 |
57
|
3adant3 |
⊢ ( ( ( 𝑓 “ 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ∈ Fin ) |
59 |
|
domsdomtrfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
60 |
58 59
|
syld3an1 |
⊢ ( ( ( 𝑓 “ 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
61 |
56 60
|
syld3an1 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
62 |
52 61
|
syl3an2 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≈ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
63 |
62
|
3expia |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) → ( ( 𝑓 “ 𝐵 ) ≺ 𝑥 → 𝐵 ≺ 𝑥 ) ) |
64 |
41 51 63
|
syl2an |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ( ( 𝑓 “ 𝐵 ) ≺ 𝑥 → 𝐵 ≺ 𝑥 ) ) |
65 |
40 64
|
mpd |
⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → 𝐵 ≺ 𝑥 ) |
66 |
65
|
exp32 |
⊢ ( 𝑥 ∈ ω → ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥 ) ) ) |
67 |
66
|
exlimdv |
⊢ ( 𝑥 ∈ ω → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥 ) ) ) |
68 |
2 67
|
syl5bi |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥 ) ) ) |
69 |
|
ensymfib |
⊢ ( 𝑥 ∈ Fin → ( 𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥 ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ) → ( 𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥 ) ) |
71 |
70
|
biimp3ar |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥 ) → 𝑥 ≈ 𝐴 ) |
72 |
|
endom |
⊢ ( 𝑥 ≈ 𝐴 → 𝑥 ≼ 𝐴 ) |
73 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝑥 → 𝐵 ≼ 𝑥 ) |
74 |
|
domfi |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ 𝑥 ) → 𝐵 ∈ Fin ) |
75 |
73 74
|
sylan2 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ) → 𝐵 ∈ Fin ) |
76 |
75
|
3adant3 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → 𝐵 ∈ Fin ) |
77 |
|
sdomdomtrfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
78 |
76 77
|
syld3an1 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
79 |
72 78
|
syl3an3 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≈ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
80 |
71 79
|
syld3an3 |
⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥 ) → 𝐵 ≺ 𝐴 ) |
81 |
41 80
|
syl3an1 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥 ) → 𝐵 ≺ 𝐴 ) |
82 |
81
|
3com23 |
⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ∧ 𝐵 ≺ 𝑥 ) → 𝐵 ≺ 𝐴 ) |
83 |
82
|
3exp |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ≺ 𝑥 → 𝐵 ≺ 𝐴 ) ) ) |
84 |
68 83
|
syldd |
⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) ) |
85 |
84
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
86 |
1 85
|
sylbi |
⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
87 |
86
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |