Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | pssnel | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssdif | ⊢ ( 𝐴 ⊊ 𝐵 → ( 𝐵 ∖ 𝐴 ) ≠ ∅ ) | |
2 | n0 | ⊢ ( ( 𝐵 ∖ 𝐴 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) | |
3 | 1 2 | sylib | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) |
4 | eldif | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
5 | 4 | exbii | ⊢ ( ∃ 𝑥 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
6 | 3 5 | sylib | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |