Description: A proper subclass has a member in one argument that's not in both. (Contributed by NM, 29-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | pssnel | |- ( A C. B -> E. x ( x e. B /\ -. x e. A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssdif | |- ( A C. B -> ( B \ A ) =/= (/) ) |
|
2 | n0 | |- ( ( B \ A ) =/= (/) <-> E. x x e. ( B \ A ) ) |
|
3 | 1 2 | sylib | |- ( A C. B -> E. x x e. ( B \ A ) ) |
4 | eldif | |- ( x e. ( B \ A ) <-> ( x e. B /\ -. x e. A ) ) |
|
5 | 4 | exbii | |- ( E. x x e. ( B \ A ) <-> E. x ( x e. B /\ -. x e. A ) ) |
6 | 3 5 | sylib | |- ( A C. B -> E. x ( x e. B /\ -. x e. A ) ) |