Description: A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pssdif | |- ( A C. B -> ( B \ A ) =/= (/) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pss | |- ( A C. B <-> ( A C_ B /\ A =/= B ) ) | |
| 2 | pssdifn0 | |- ( ( A C_ B /\ A =/= B ) -> ( B \ A ) =/= (/) ) | |
| 3 | 1 2 | sylbi | |- ( A C. B -> ( B \ A ) =/= (/) ) |