Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | pssdifn0 | |- ( ( A C_ B /\ A =/= B ) -> ( B \ A ) =/= (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 | |- ( B C_ A <-> ( B \ A ) = (/) ) |
|
2 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
3 | 2 | simplbi2 | |- ( A C_ B -> ( B C_ A -> A = B ) ) |
4 | 1 3 | syl5bir | |- ( A C_ B -> ( ( B \ A ) = (/) -> A = B ) ) |
5 | 4 | necon3d | |- ( A C_ B -> ( A =/= B -> ( B \ A ) =/= (/) ) ) |
6 | 5 | imp | |- ( ( A C_ B /\ A =/= B ) -> ( B \ A ) =/= (/) ) |