Metamath Proof Explorer


Theorem pssdifn0

Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994)

Ref Expression
Assertion pssdifn0 ABABBA

Proof

Step Hyp Ref Expression
1 ssdif0 BABA=
2 eqss A=BABBA
3 2 simplbi2 ABBAA=B
4 1 3 biimtrrid ABBA=A=B
5 4 necon3d ABABBA
6 5 imp ABABBA