Metamath Proof Explorer


Theorem ssdif0

Description: Subclass expressed in terms of difference. Exercise 7 of TakeutiZaring p. 22. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion ssdif0
|- ( A C_ B <-> ( A \ B ) = (/) )

Proof

Step Hyp Ref Expression
1 iman
 |-  ( ( x e. A -> x e. B ) <-> -. ( x e. A /\ -. x e. B ) )
2 eldif
 |-  ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) )
3 1 2 xchbinxr
 |-  ( ( x e. A -> x e. B ) <-> -. x e. ( A \ B ) )
4 3 albii
 |-  ( A. x ( x e. A -> x e. B ) <-> A. x -. x e. ( A \ B ) )
5 dfss2
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
6 eq0
 |-  ( ( A \ B ) = (/) <-> A. x -. x e. ( A \ B ) )
7 4 5 6 3bitr4i
 |-  ( A C_ B <-> ( A \ B ) = (/) )