Metamath Proof Explorer


Theorem iman

Description: Implication in terms of conjunction and negation. Theorem 3.4(27) of Stoll p. 176. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 30-Oct-2012)

Ref Expression
Assertion iman
|- ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) )

Proof

Step Hyp Ref Expression
1 notnotb
 |-  ( ps <-> -. -. ps )
2 1 imbi2i
 |-  ( ( ph -> ps ) <-> ( ph -> -. -. ps ) )
3 imnan
 |-  ( ( ph -> -. -. ps ) <-> -. ( ph /\ -. ps ) )
4 2 3 bitri
 |-  ( ( ph -> ps ) <-> -. ( ph /\ -. ps ) )