Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpss3 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) | |
| 2 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 3 | 2 | baib | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 = 𝐵 ↔ 𝐵 ⊆ 𝐴 ) ) | 
| 4 | 3 | notbid | ⊢ ( 𝐴 ⊆ 𝐵 → ( ¬ 𝐴 = 𝐵 ↔ ¬ 𝐵 ⊆ 𝐴 ) ) | 
| 5 | 4 | pm5.32i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) | 
| 6 | 1 5 | bitri | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴 ) ) |