Metamath Proof Explorer


Theorem dfpss3

Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion dfpss3 ABAB¬BA

Proof

Step Hyp Ref Expression
1 dfpss2 ABAB¬A=B
2 eqss A=BABBA
3 2 baib ABA=BBA
4 3 notbid AB¬A=B¬BA
5 4 pm5.32i AB¬A=BAB¬BA
6 1 5 bitri ABAB¬BA