Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
psseq1
Next ⟩
psseq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
psseq1
Description:
Equality theorem for proper subclass.
(Contributed by
NM
, 7-Feb-1996)
Ref
Expression
Assertion
psseq1
⊢
A
=
B
→
A
⊂
C
↔
B
⊂
C
Proof
Step
Hyp
Ref
Expression
1
sseq1
⊢
A
=
B
→
A
⊆
C
↔
B
⊆
C
2
neeq1
⊢
A
=
B
→
A
≠
C
↔
B
≠
C
3
1
2
anbi12d
⊢
A
=
B
→
A
⊆
C
∧
A
≠
C
↔
B
⊆
C
∧
B
≠
C
4
df-pss
⊢
A
⊂
C
↔
A
⊆
C
∧
A
≠
C
5
df-pss
⊢
B
⊂
C
↔
B
⊆
C
∧
B
≠
C
6
3
4
5
3bitr4g
⊢
A
=
B
→
A
⊂
C
↔
B
⊂
C