Metamath Proof Explorer


Theorem psseq1

Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion psseq1 A = B A C B C

Proof

Step Hyp Ref Expression
1 sseq1 A = B A C B C
2 neeq1 A = B A C B C
3 1 2 anbi12d A = B A C A C B C B C
4 df-pss A C A C A C
5 df-pss B C B C B C
6 3 4 5 3bitr4g A = B A C B C