Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
psseq2
Next ⟩
psseq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
psseq2
Description:
Equality theorem for proper subclass.
(Contributed by
NM
, 7-Feb-1996)
Ref
Expression
Assertion
psseq2
⊢
A
=
B
→
C
⊂
A
↔
C
⊂
B
Proof
Step
Hyp
Ref
Expression
1
sseq2
⊢
A
=
B
→
C
⊆
A
↔
C
⊆
B
2
neeq2
⊢
A
=
B
→
C
≠
A
↔
C
≠
B
3
1
2
anbi12d
⊢
A
=
B
→
C
⊆
A
∧
C
≠
A
↔
C
⊆
B
∧
C
≠
B
4
df-pss
⊢
C
⊂
A
↔
C
⊆
A
∧
C
≠
A
5
df-pss
⊢
C
⊂
B
↔
C
⊆
B
∧
C
≠
B
6
3
4
5
3bitr4g
⊢
A
=
B
→
C
⊂
A
↔
C
⊂
B