Metamath Proof Explorer


Theorem psseq2

Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion psseq2 A=BCACB

Proof

Step Hyp Ref Expression
1 sseq2 A=BCACB
2 neeq2 A=BCACB
3 1 2 anbi12d A=BCACACBCB
4 df-pss CACACA
5 df-pss CBCBCB
6 3 4 5 3bitr4g A=BCACB