Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | psseq1 | |- ( A = B -> ( A C. C <-> B C. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |
|
2 | neeq1 | |- ( A = B -> ( A =/= C <-> B =/= C ) ) |
|
3 | 1 2 | anbi12d | |- ( A = B -> ( ( A C_ C /\ A =/= C ) <-> ( B C_ C /\ B =/= C ) ) ) |
4 | df-pss | |- ( A C. C <-> ( A C_ C /\ A =/= C ) ) |
|
5 | df-pss | |- ( B C. C <-> ( B C_ C /\ B =/= C ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( A = B -> ( A C. C <-> B C. C ) ) |