Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpss2 | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | df-ne | ⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) | |
3 | 2 | anbi2i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) |
4 | 1 3 | bitri | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵 ) ) |