Metamath Proof Explorer


Theorem dfpss2

Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996)

Ref Expression
Assertion dfpss2 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-pss ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
2 df-ne ( 𝐴𝐵 ↔ ¬ 𝐴 = 𝐵 )
3 2 anbi2i ( ( 𝐴𝐵𝐴𝐵 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 = 𝐵 ) )
4 1 3 bitri ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴 = 𝐵 ) )