Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | psseq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
Assertion | psseq2d | ⊢ ( 𝜑 → ( 𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | psseq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵 ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵 ) ) |