Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3adant.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
Assertion | 3adant2 | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜓 ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
2 | 1 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ 𝜓 ) → 𝜒 ) |
3 | 2 | 3impa | ⊢ ( ( 𝜑 ∧ 𝜃 ∧ 𝜓 ) → 𝜒 ) |