Metamath Proof Explorer


Theorem syl3an2

Description: A syllogism inference. (Contributed by NM, 22-Aug-1995) (Proof shortened by Wolf Lammen, 26-Jun-2022)

Ref Expression
Hypotheses syl3an2.1 ( 𝜑𝜒 )
syl3an2.2 ( ( 𝜓𝜒𝜃 ) → 𝜏 )
Assertion syl3an2 ( ( 𝜓𝜑𝜃 ) → 𝜏 )

Proof

Step Hyp Ref Expression
1 syl3an2.1 ( 𝜑𝜒 )
2 syl3an2.2 ( ( 𝜓𝜒𝜃 ) → 𝜏 )
3 1 3anim2i ( ( 𝜓𝜑𝜃 ) → ( 𝜓𝜒𝜃 ) )
4 3 2 syl ( ( 𝜓𝜑𝜃 ) → 𝜏 )