Metamath Proof Explorer


Theorem nnfi

Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion nnfi AωAFin

Proof

Step Hyp Ref Expression
1 enrefnn AωAA
2 breq2 x=AAxAA
3 2 rspcev AωAAxωAx
4 1 3 mpdan AωxωAx
5 isfi AFinxωAx
6 4 5 sylibr AωAFin