Metamath Proof Explorer


Theorem nnfi

Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015) Avoid ax-pow . (Revised by BTernaryTau, 23-Sep-2024)

Ref Expression
Assertion nnfi
|- ( A e. _om -> A e. Fin )

Proof

Step Hyp Ref Expression
1 enrefnn
 |-  ( A e. _om -> A ~~ A )
2 breq2
 |-  ( x = A -> ( A ~~ x <-> A ~~ A ) )
3 2 rspcev
 |-  ( ( A e. _om /\ A ~~ A ) -> E. x e. _om A ~~ x )
4 1 3 mpdan
 |-  ( A e. _om -> E. x e. _om A ~~ x )
5 isfi
 |-  ( A e. Fin <-> E. x e. _om A ~~ x )
6 4 5 sylibr
 |-  ( A e. _om -> A e. Fin )