Metamath Proof Explorer


Theorem sdomdomtrfi

Description: Transitivity of strict dominance and dominance when A is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)

Ref Expression
Assertion sdomdomtrfi AFinABBCAC

Proof

Step Hyp Ref Expression
1 sdomdom ABAB
2 domtrfil AFinABBCAC
3 1 2 syl3an2 AFinABBCAC
4 simp1 AFinBCACAFin
5 ensymfib AFinACCA
6 5 biimpa AFinACCA
7 6 3adant2 AFinBCACCA
8 endom CACA
9 domtrfir AFinBCCABA
10 8 9 syl3an3 AFinBCCABA
11 7 10 syld3an3 AFinBCACBA
12 domfi AFinBABFin
13 domnsymfi BFinBA¬AB
14 12 13 sylancom AFinBA¬AB
15 4 11 14 syl2anc AFinBCAC¬AB
16 15 3expia AFinBCAC¬AB
17 16 con2d AFinBCAB¬AC
18 17 3impia AFinBCAB¬AC
19 18 3com23 AFinABBC¬AC
20 brsdom ACAC¬AC
21 3 19 20 sylanbrc AFinABBCAC