Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym ). (Contributed by BTernaryTau, 22-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | domnsymfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brdom2 | |
|
2 | sdomnen | |
|
3 | 2 | adantl | |
4 | sdomdom | |
|
5 | sdomdom | |
|
6 | sbthfi | |
|
7 | ensymfib | |
|
8 | 7 | 3ad2ant1 | |
9 | 6 8 | mpbird | |
10 | 5 9 | syl3an2 | |
11 | 4 10 | syl3an3 | |
12 | 11 | 3com23 | |
13 | 12 | 3expa | |
14 | 3 13 | mtand | |
15 | sdomnen | |
|
16 | 7 | biimpa | |
17 | 15 16 | nsyl3 | |
18 | 14 17 | jaodan | |
19 | 1 18 | sylan2b | |