Metamath Proof Explorer


Theorem domnsymfi

Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym ). (Contributed by BTernaryTau, 22-Nov-2024)

Ref Expression
Assertion domnsymfi AFinAB¬BA

Proof

Step Hyp Ref Expression
1 brdom2 ABABAB
2 sdomnen AB¬AB
3 2 adantl AFinAB¬AB
4 sdomdom ABAB
5 sdomdom BABA
6 sbthfi AFinBAABBA
7 ensymfib AFinABBA
8 7 3ad2ant1 AFinBAABABBA
9 6 8 mpbird AFinBAABAB
10 5 9 syl3an2 AFinBAABAB
11 4 10 syl3an3 AFinBAABAB
12 11 3com23 AFinABBAAB
13 12 3expa AFinABBAAB
14 3 13 mtand AFinAB¬BA
15 sdomnen BA¬BA
16 7 biimpa AFinABBA
17 15 16 nsyl3 AFinAB¬BA
18 14 17 jaodan AFinABAB¬BA
19 1 18 sylan2b AFinAB¬BA