Metamath Proof Explorer


Theorem domnsymfi

Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym ). (Contributed by BTernaryTau, 22-Nov-2024)

Ref Expression
Assertion domnsymfi A Fin A B ¬ B A

Proof

Step Hyp Ref Expression
1 brdom2 A B A B A B
2 sdomnen A B ¬ A B
3 2 adantl A Fin A B ¬ A B
4 sdomdom A B A B
5 sdomdom B A B A
6 sbthfi A Fin B A A B B A
7 ensymfib A Fin A B B A
8 7 3ad2ant1 A Fin B A A B A B B A
9 6 8 mpbird A Fin B A A B A B
10 5 9 syl3an2 A Fin B A A B A B
11 4 10 syl3an3 A Fin B A A B A B
12 11 3com23 A Fin A B B A A B
13 12 3expa A Fin A B B A A B
14 3 13 mtand A Fin A B ¬ B A
15 sdomnen B A ¬ B A
16 7 biimpa A Fin A B B A
17 15 16 nsyl3 A Fin A B ¬ B A
18 14 17 jaodan A Fin A B A B ¬ B A
19 1 18 sylan2b A Fin A B ¬ B A