Metamath Proof Explorer


Theorem domtrfir

Description: Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion domtrfir CFinABBCAC

Proof

Step Hyp Ref Expression
1 domfi CFinBCBFin
2 1 3adant2 CFinABBCBFin
3 domtrfi BFinABBCAC
4 2 3 syld3an1 CFinABBCAC