Metamath Proof Explorer


Theorem php2

Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 20-Nov-2024)

Ref Expression
Assertion php2 AωBABA

Proof

Step Hyp Ref Expression
1 nnfi AωAFin
2 pssss BABA
3 ssdomfi AFinBABA
4 3 imp AFinBABA
5 1 2 4 syl2an AωBABA
6 php AωBA¬AB
7 ensymfib AFinABBA
8 7 biimprd AFinBAAB
9 1 8 syl AωBAAB
10 9 adantr AωBABAAB
11 6 10 mtod AωBA¬BA
12 brsdom BABA¬BA
13 5 11 12 sylanbrc AωBABA