Metamath Proof Explorer


Theorem php2

Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 20-Nov-2024)

Ref Expression
Assertion php2 A ω B A B A

Proof

Step Hyp Ref Expression
1 nnfi A ω A Fin
2 pssss B A B A
3 ssdomfi A Fin B A B A
4 3 imp A Fin B A B A
5 1 2 4 syl2an A ω B A B A
6 php A ω B A ¬ A B
7 ensymfib A Fin A B B A
8 7 biimprd A Fin B A A B
9 1 8 syl A ω B A A B
10 9 adantr A ω B A B A A B
11 6 10 mtod A ω B A ¬ B A
12 brsdom B A B A ¬ B A
13 5 11 12 sylanbrc A ω B A B A