Metamath Proof Explorer


Theorem php

Description: Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of Enderton p. 134. The theorem is so-called because you can't putn + 1 pigeons inton holes (if each hole holds only one pigeon). The proof consists of lemmas phplem1 through phplem4 , nneneq , and this final piece of the proof. (Contributed by NM, 29-May-1998)

Ref Expression
Assertion php A ω B A ¬ A B

Proof

Step Hyp Ref Expression
1 0ss B
2 sspsstr B B A A
3 1 2 mpan B A A
4 0pss A A
5 df-ne A ¬ A =
6 4 5 bitri A ¬ A =
7 3 6 sylib B A ¬ A =
8 nn0suc A ω A = x ω A = suc x
9 8 orcanai A ω ¬ A = x ω A = suc x
10 7 9 sylan2 A ω B A x ω A = suc x
11 pssnel B suc x y y suc x ¬ y B
12 pssss B suc x B suc x
13 ssdif B suc x B y suc x y
14 disjsn B y = ¬ y B
15 disj3 B y = B = B y
16 14 15 bitr3i ¬ y B B = B y
17 sseq1 B = B y B suc x y B y suc x y
18 16 17 sylbi ¬ y B B suc x y B y suc x y
19 13 18 syl5ibr ¬ y B B suc x B suc x y
20 vex x V
21 20 sucex suc x V
22 21 difexi suc x y V
23 ssdomg suc x y V B suc x y B suc x y
24 22 23 ax-mp B suc x y B suc x y
25 12 19 24 syl56 ¬ y B B suc x B suc x y
26 25 imp ¬ y B B suc x B suc x y
27 vex y V
28 20 27 phplem3 x ω y suc x x suc x y
29 28 ensymd x ω y suc x suc x y x
30 domentr B suc x y suc x y x B x
31 26 29 30 syl2an ¬ y B B suc x x ω y suc x B x
32 31 exp43 ¬ y B B suc x x ω y suc x B x
33 32 com4r y suc x ¬ y B B suc x x ω B x
34 33 imp y suc x ¬ y B B suc x x ω B x
35 34 exlimiv y y suc x ¬ y B B suc x x ω B x
36 11 35 mpcom B suc x x ω B x
37 endomtr suc x B B x suc x x
38 sssucid x suc x
39 ssdomg suc x V x suc x x suc x
40 21 38 39 mp2 x suc x
41 sbth suc x x x suc x suc x x
42 37 40 41 sylancl suc x B B x suc x x
43 42 expcom B x suc x B suc x x
44 peano2b x ω suc x ω
45 nnord suc x ω Ord suc x
46 44 45 sylbi x ω Ord suc x
47 20 sucid x suc x
48 nordeq Ord suc x x suc x suc x x
49 46 47 48 sylancl x ω suc x x
50 nneneq suc x ω x ω suc x x suc x = x
51 44 50 sylanb x ω x ω suc x x suc x = x
52 51 anidms x ω suc x x suc x = x
53 52 necon3bbid x ω ¬ suc x x suc x x
54 49 53 mpbird x ω ¬ suc x x
55 43 54 nsyli B x x ω ¬ suc x B
56 36 55 syli B suc x x ω ¬ suc x B
57 56 com12 x ω B suc x ¬ suc x B
58 psseq2 A = suc x B A B suc x
59 breq1 A = suc x A B suc x B
60 59 notbid A = suc x ¬ A B ¬ suc x B
61 58 60 imbi12d A = suc x B A ¬ A B B suc x ¬ suc x B
62 57 61 syl5ibrcom x ω A = suc x B A ¬ A B
63 62 rexlimiv x ω A = suc x B A ¬ A B
64 10 63 syl A ω B A B A ¬ A B
65 64 ex A ω B A B A ¬ A B
66 65 pm2.43d A ω B A ¬ A B
67 66 imp A ω B A ¬ A B