Metamath Proof Explorer


Theorem nordeq

Description: A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998)

Ref Expression
Assertion nordeq OrdABAAB

Proof

Step Hyp Ref Expression
1 ordirr OrdA¬AA
2 eleq1 A=BAABA
3 2 notbid A=B¬AA¬BA
4 1 3 syl5ibcom OrdAA=B¬BA
5 4 necon2ad OrdABAAB
6 5 imp OrdABAAB