| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phplem2.1 |  | 
						
							| 2 |  | bren |  | 
						
							| 3 |  | f1of1 |  | 
						
							| 4 |  | nnfi |  | 
						
							| 5 |  | sssucid |  | 
						
							| 6 |  | f1imaenfi |  | 
						
							| 7 | 5 6 | mp3an2 |  | 
						
							| 8 | 3 4 7 | syl2anr |  | 
						
							| 9 |  | ensymfib |  | 
						
							| 10 | 4 9 | syl |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 | 8 11 | mpbird |  | 
						
							| 13 |  | nnord |  | 
						
							| 14 |  | orddif |  | 
						
							| 15 | 13 14 | syl |  | 
						
							| 16 | 15 | imaeq2d |  | 
						
							| 17 |  | f1ofn |  | 
						
							| 18 | 1 | sucid |  | 
						
							| 19 |  | fnsnfv |  | 
						
							| 20 | 17 18 19 | sylancl |  | 
						
							| 21 | 20 | difeq2d |  | 
						
							| 22 |  | imadmrn |  | 
						
							| 23 | 22 | eqcomi |  | 
						
							| 24 |  | f1ofo |  | 
						
							| 25 |  | forn |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 |  | f1odm |  | 
						
							| 28 | 27 | imaeq2d |  | 
						
							| 29 | 23 26 28 | 3eqtr3a |  | 
						
							| 30 | 29 | difeq1d |  | 
						
							| 31 |  | dff1o3 |  | 
						
							| 32 |  | imadif |  | 
						
							| 33 | 31 32 | simplbiim |  | 
						
							| 34 | 21 30 33 | 3eqtr4rd |  | 
						
							| 35 | 16 34 | sylan9eq |  | 
						
							| 36 | 12 35 | breqtrd |  | 
						
							| 37 |  | fnfvelrn |  | 
						
							| 38 | 17 18 37 | sylancl |  | 
						
							| 39 | 25 | eleq2d |  | 
						
							| 40 | 24 39 | syl |  | 
						
							| 41 | 38 40 | mpbid |  | 
						
							| 42 |  | phplem1 |  | 
						
							| 43 | 41 42 | sylan2 |  | 
						
							| 44 |  | nnfi |  | 
						
							| 45 |  | ensymfib |  | 
						
							| 46 | 44 45 | syl |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 43 47 | mpbid |  | 
						
							| 49 |  | entrfil |  | 
						
							| 50 | 4 49 | syl3an1 |  | 
						
							| 51 | 48 50 | syl3an3 |  | 
						
							| 52 | 51 | 3expa |  | 
						
							| 53 | 36 52 | syldanl |  | 
						
							| 54 | 53 | anandirs |  | 
						
							| 55 | 54 | ex |  | 
						
							| 56 | 55 | exlimdv |  | 
						
							| 57 | 2 56 | biimtrid |  |