Metamath Proof Explorer


Theorem 3eqtr4rd

Description: A deduction from three chained equalities. (Contributed by NM, 21-Sep-1995)

Ref Expression
Hypotheses 3eqtr4d.1 φ A = B
3eqtr4d.2 φ C = A
3eqtr4d.3 φ D = B
Assertion 3eqtr4rd φ D = C

Proof

Step Hyp Ref Expression
1 3eqtr4d.1 φ A = B
2 3eqtr4d.2 φ C = A
3 3eqtr4d.3 φ D = B
4 3 1 eqtr4d φ D = A
5 4 2 eqtr4d φ D = C