Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|
2 |
|
eqeq1 |
|
3 |
1 2
|
imbi12d |
|
4 |
3
|
ralbidv |
|
5 |
|
breq1 |
|
6 |
|
eqeq1 |
|
7 |
5 6
|
imbi12d |
|
8 |
7
|
ralbidv |
|
9 |
|
breq1 |
|
10 |
|
eqeq1 |
|
11 |
9 10
|
imbi12d |
|
12 |
11
|
ralbidv |
|
13 |
|
breq1 |
|
14 |
|
eqeq1 |
|
15 |
13 14
|
imbi12d |
|
16 |
15
|
ralbidv |
|
17 |
|
0fin |
|
18 |
|
ensymfib |
|
19 |
17 18
|
ax-mp |
|
20 |
|
en0 |
|
21 |
|
eqcom |
|
22 |
20 21
|
bitri |
|
23 |
19 22
|
sylbb |
|
24 |
23
|
rgenw |
|
25 |
|
nn0suc |
|
26 |
|
en0 |
|
27 |
|
breq2 |
|
28 |
|
eqeq2 |
|
29 |
27 28
|
bibi12d |
|
30 |
26 29
|
mpbiri |
|
31 |
30
|
biimpd |
|
32 |
31
|
a1i |
|
33 |
|
nfv |
|
34 |
|
nfra1 |
|
35 |
33 34
|
nfan |
|
36 |
|
nfv |
|
37 |
|
vex |
|
38 |
37
|
phplem2 |
|
39 |
38
|
imim1d |
|
40 |
39
|
ex |
|
41 |
40
|
a2d |
|
42 |
|
rsp |
|
43 |
41 42
|
impel |
|
44 |
|
suceq |
|
45 |
43 44
|
syl8 |
|
46 |
|
breq2 |
|
47 |
|
eqeq2 |
|
48 |
46 47
|
imbi12d |
|
49 |
48
|
biimprcd |
|
50 |
45 49
|
syl6 |
|
51 |
35 36 50
|
rexlimd |
|
52 |
32 51
|
jaod |
|
53 |
52
|
ex |
|
54 |
25 53
|
syl7 |
|
55 |
54
|
ralrimdv |
|
56 |
|
breq2 |
|
57 |
|
eqeq2 |
|
58 |
56 57
|
imbi12d |
|
59 |
58
|
cbvralvw |
|
60 |
55 59
|
syl6ib |
|
61 |
4 8 12 16 24 60
|
finds |
|
62 |
|
breq2 |
|
63 |
|
eqeq2 |
|
64 |
62 63
|
imbi12d |
|
65 |
64
|
rspcv |
|
66 |
61 65
|
mpan9 |
|
67 |
|
enrefnn |
|
68 |
|
breq2 |
|
69 |
67 68
|
syl5ibcom |
|
70 |
69
|
adantr |
|
71 |
66 70
|
impbid |
|