Metamath Proof Explorer


Theorem cbvralvw

Description: Change the bound variable of a restricted universal quantifier using implicit substitution. Version of cbvralv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 28-Jan-1997) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvralvw.1 x = y φ ψ
Assertion cbvralvw x A φ y A ψ

Proof

Step Hyp Ref Expression
1 cbvralvw.1 x = y φ ψ
2 eleq1w x = y x A y A
3 2 1 imbi12d x = y x A φ y A ψ
4 3 cbvalvw x x A φ y y A ψ
5 df-ral x A φ x x A φ
6 df-ral y A ψ y y A ψ
7 4 5 6 3bitr4i x A φ y A ψ