Metamath Proof Explorer


Theorem cbvralvw

Description: Change the bound variable of a restricted universal quantifier using implicit substitution. Version of cbvralv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 28-Jan-1997) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvralvw.1 x=yφψ
Assertion cbvralvw xAφyAψ

Proof

Step Hyp Ref Expression
1 cbvralvw.1 x=yφψ
2 eleq1w x=yxAyA
3 2 1 imbi12d x=yxAφyAψ
4 3 cbvalvw xxAφyyAψ
5 df-ral xAφxxAφ
6 df-ral yAψyyAψ
7 4 5 6 3bitr4i xAφyAψ