Metamath Proof Explorer


Theorem cbvrexvw

Description: Change the bound variable of a restricted existential quantifier using implicit substitution. Version of cbvrexv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 2-Jun-1998) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvralvw.1 x=yφψ
Assertion cbvrexvw xAφyAψ

Proof

Step Hyp Ref Expression
1 cbvralvw.1 x=yφψ
2 eleq1w x=yxAyA
3 2 1 anbi12d x=yxAφyAψ
4 3 cbvexvw xxAφyyAψ
5 df-rex xAφxxAφ
6 df-rex yAψyyAψ
7 4 5 6 3bitr4i xAφyAψ