Metamath Proof Explorer


Theorem cbvrexvw

Description: Change the bound variable of a restricted existential quantifier using implicit substitution. Version of cbvrexv with a disjoint variable condition, which does not require ax-10 , ax-11 , ax-12 , ax-13 . (Contributed by NM, 2-Jun-1998) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis cbvralvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion cbvrexvw ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 cbvralvw.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 1 anbi12d ( 𝑥 = 𝑦 → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑦𝐴𝜓 ) ) )
4 3 cbvexvw ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑦 ( 𝑦𝐴𝜓 ) )
5 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
6 df-rex ( ∃ 𝑦𝐴 𝜓 ↔ ∃ 𝑦 ( 𝑦𝐴𝜓 ) )
7 4 5 6 3bitr4i ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑦𝐴 𝜓 )